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Abstract: Adaptive filters combination approach 

provides the diversity that can be used to amplify 

performance beyond the ability of individual 

adaptive filter. This paper presents the tracking 

behavior of the combination of Normalized Least 

Mean Square (NLMS) algorithm and the Recursive 

Least Square (RLS) algorithm in nonstationary 

environment modeled as time-varying Rayleigh 

sequences arising due to different Doppler shifts. 

The main performance metrics to evaluate the 

techniques are the mean squared error and mean 

squared deviation. Simulation results validate the 

superiority of combining NLMS and RLS over 

component algorithms, regarding fast convergence 

and reduced steady state MSE.  

 

Introduction: 

 The algorithm’s capacity to follow the statistical 

variations of the signal is one of the significant 

focuses to be viewed as, while adopting an 

appropriate algorithm for a given application. These 

variations in channels result from Doppler’s shift in 

a high velocity scenario, like fast moving objects. 

The degree of Doppler shifts produced depends on 

circumstances; such as, the transmitting frequency, 

slope of terrain, obstructions and relative moment of 

the transmitter and receiver[1], [2]. The issue is 

aggravated by multipath impacts because of 

reflections, dispersing and diffraction, causing inter-

symbol interference (ISI)[3]. Although the gradient 

based-LMS algorithm ,performs better in steady 

state, it suffers from a slow convergence rate[4], [5]. 

Faster convergence is one of the preeminent property 

of RLS but degradation of its steady-state behavior 

in non-stationary environment is its drawback [6]. 

The ability of LMS and RLS for tracking is 

influenced by the surrounding environment [7]–

[9]Variable step size adaptive schemes can be a 

viable solution for achieving fast convergence as 

well as lower steady state error. However it is 

demonstrated by [10] that there is no single VS-LMS 

algorithm that is perfect for all applications. In a 

variety of contexts, the issue of channel tracking has 

been studied. A few related studies are mentioned 

here. Capability of decision directed (DD) maximum 

likelihood (ML) channel tracking algorithm is 

analyzed in [11] . Kalman tracking is utilized for 

performance evaluation of MIMO-OFDM 

communication ,and low mobility channel is 

considered with inter-block fluctuation[12] . A 

mathematical approach, the “reward –punishment” 

rule is utilized to get a variable step size algorithm 

,and then applied to estimate the nonstationary 

Rayleigh fading channel [13]. Combination of 

GVSS-LMS and MKF algorithms [14] and frame 

splitting [15] is used for OFDM . For massive MIMO 

systems, channel tracking is inspected in [16].The 

efficiency of Kalman filter for MIMO is researched  

[17], scheme for joint CFO with Channel estimation 

is introduced by [18]. Spline adaptive filters [20] and 

least squares [21] have been applied for tracking of 

channels. Frictional-order algorithms are used for 

tracking of Rayleigh fading channels [22].  

The idea to add up the outputs of few different 

adaptive algorithms for achievement of superior 

results than that of a component filter was at first 

introduced by [23] ,which was latter upgraded by 

[24], [25]. Previous works were mostly confined to 

combine the adaptive filters of the same families, i.e., 

two Least Mean Square [26]–[28], two recursive 

Least Square [26] or two Constant Modulus 

Algorithm [29] filters with distinct controlling 

parameters, such as µ or λ. Combination of different 

algorithms to get improved performance was 

proposed by [27] and it was also proved that the 

combination is universal and can be applied to 

distinct option of algorithms. Combination of 

IJSER

http://www.ijser.org/
mailto:tabassumnaz@gmail.com
mailto:irfanzafar@msn.com


International Journal of Scientific & Engineering Research Volume 12, Issue 8, August-2021                                                                                                 345 
ISSN 2229-5518  
 

IJSER © 2021 

http://www.ijser.org 

different algorithms have been utilized in a diversity 

of applications such as adaptive line enhancement 

[30], characterization of  signal modality[31], for 

sparse or acoustic echo cancelation[32]–[35], array 

beamforming [36], [37], and active noise 

control[38], [39]. The combination of adaptive filters 

endeavors the divide and conquer principle that has 

also been utilized by the machine-learning 

community (e.g., in bagging or boosting[40]). This 

paper presents the combination of NLMS and RLS 

algorithm for fast convergence and lower steady state 

error. 

 The remainder of the paper is organized as follows: 

In next section, system model and notations are 

shown. In section 3, tracking phenomenon is 

presented first, then LMS and RLS algorithms along 

with their variants ;NLMS and E-RLS are described. 

Simulation results are presented in section 4.In the 

end, conclusions are drawn. 

 
Problem formulation and notation 
 

Two phenomena i.e., multipath effect and Doppler 

shift, in conjunction with each other attenuates 

communication channels. When there is no distinct 

dominant path between transmitter and receiver then 

Rayleigh model is used to anticipate and mitigate the 

effects of different types of fading accurately[41]. 

Rayleigh fading channels provides a realistic 

illustration of time-varying environment. In such 

case the optimal Weiner Hopf tap weight; 𝐰0 =
𝐑−1𝐩 ,is also time varying. In order to track the 

alterations in the optimal weights an adaptive filter is 
required in which weight update equation does not 

depend upon cross correlation or auto-correlation 

matrices. Convergence rate, computational 

complexity, steady state error and filter stability are 

normally considered while selecting a filter 

algorithm. These characteristics depend upon 

structure of filter, error metric and adaptation 

algorithm. 

 
Figure 1: Schematic of adaptive tracking problem 

 

 Figure 1 illustrates the configuration of   FIR 

transversal filter with N taps, used for tracking of 

Rayleigh fading channel .Input data vector x is 

considered as row vector ,and weight vectors are 

assumed column vectors. Small letters are used to 

represent scalars, while capital bold letter denote 

matrix. k represents the time instant referring to 

sample number or iteration. We mostly suppose  the 

accessibility of an input vector x(k) and reference 

signal d(k) ,that satisfy the linear regression model 

,𝑑(𝑘)=𝐰0(𝑘)𝐱(𝑘) + 𝑔(𝑘),by minimization of 

instantaneous squared error between 𝑑(𝑘) and output 

𝑦(𝑘).Here , 𝐰0(𝑘) is time-varying optimal Weiner 

solution and 𝑔(𝑘) is a noise sequence, described as a 

zero mean Gaussian random variable. Output y(k) at 

time instant k can be described as: 

y(k)= ∑ 𝑤𝑖(𝑘 − 1)𝑥(𝑘 − 𝑖)𝑁−1
𝑖=0 =
𝐱(𝑘)𝐰(𝑘 − 1) 

(1) 

Where: 

W(𝑘) = [𝑤0 (𝑘), 𝑤1(𝑘) … , 𝑤𝑁−1(𝑘)]T (2) 

And 

𝐱(𝑘) = [𝑥(𝑘), 𝑥(𝑘 − 1), … , 𝑥(𝑘 − 𝑁 + 1)] (3) 

Error signal e(n) described as:  

e(n) = d(n)- y(n) (4) 

Which can be utilized to generate cost function 𝜉(𝑘) 

, required to estimate the optimal adaptive filter 

coefficient. Cost function Gradually reduced to its 

minimum value, as a result of this operation[42].  

During the adaptation process, an adaptive filter 

begins with an arbitrary initial condition and passes 

through a transition phase before convergence and 

reaching its steady state. The performance of an 

adaptive filter in following changes in the input 
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signals, after it has arrived at its steady state is termed 

as tracking. A fast convergent algorithm, may or may 

not be capable of fast tracking [43].  

Least Mean Square Algorithm 

Minimization of a cost function or particular 

objective is followed by adaptation of the filter 

coefficients. The MSE is represented by:  

𝜉 = 𝐸[𝑒2(𝑘)] 
            = 𝐸[|𝑑(𝑘) − 𝑦(𝑘)|2] 

(5) 

Replacing 𝑦(𝑘) by 𝐰T𝐱(𝑘), one obtains: 

𝜉(𝑘) = 𝐸[|𝑑(𝑘) − 𝐰T𝐱(𝑘)|2] 

= 𝐸[𝑑2(𝑘)] − 2𝐰TE[𝑑(𝑘)𝐱(𝑘)]
+ 𝐰T𝐸[𝐱(𝑘)𝐱T(𝑘)]𝐰 

= 𝐸[𝑑2(𝑘)] − 2𝐰T 𝐩 + 𝐰T𝐑𝐰 

(6) 

 

where R is the autocorrelation matrix of input signal, 

and P is the cross-correlation vector between the 

reference signal and the input signal, and can be 

described as: 

𝐑 = E[𝐱(𝑘)𝐱𝐓(𝑘)] (7) 

𝐏 = [𝒅(k)𝐱T(𝑘)] (8) 

Calculating the gradient vector of Equation (6) and 

equating it to Zero will minimize the MSE cost 

function and will produce Wiener Solution 𝐰0, given 

as: 

𝐰0 = 𝐑−1 𝐩 (9) 

Inversion of matrix R is required to determine the 

Wiener solution for the MSE calculation, this makes 

Equation (9) difficult to implement.  Wiener solution 

can be estimated, in a computationally effective 

manner by using iterative algorithm. 

MSE is minimized at each time interval k, and filter 

weights are added with a correction term at time 

 k + 1, that is: 

w(k+1)=w(k)+ Δ𝒘(𝑘) (10) 

Adaptive filters are designed to handle the formation 

of this correction term. 

When minimum of a function is beyond the realm 

of analytical solution, then iterative method is used 

to obtain approximate solution. Steepest descent 

algorithm utilizes the update rule of equation (10). 

At each iteration, the algorithm will keep its quest 

in the direction that will reduce the cost function. 

𝐰(𝑘 + 1) = 𝐰(𝑘) −
µ

2
∇w𝜉(𝑘) (11) 

Substituting the gradient of (6), weight update 

equation becomes: 

𝐰(𝑘 + 1) = 𝐰(𝑘) + µ[𝐩 − 𝐑 𝐰(𝑘)] (12) 

Equation (12) is the update equation for the steepest 

descent algorithm. It can be seen that Error! 

Reference source not found. nevertheless requires 

calculation of p and R, making it unfeasible for 

practical implementation. The step-size μ specifies 

the speed of convergence. Convergence of the 

steepest-descent mechanism is assured only when 0 

< μ <
1

𝜆𝑚𝑎𝑥
    [43]. 

 The method of the steepest descent is not an adaptive 

filter but serves as a basis for the LMS algorithm. 

 Application of instantaneous square error is a simple 

way to estimate the MSE function, given as 𝜉̂(𝑘) =

𝑒2(𝑘).  Its first order derivative yields: 

∇𝑤𝜉(𝑘) =    −2𝑒(𝑘) 𝐱(𝑘) (13) 

Substituting this value in (11), will provide LMS 

weight update equation: 

𝐰(𝑘 + 1) = 𝐰(𝑘) + µ(𝑘)𝑒(𝑘)𝐱(𝑘) (14) 

Step size µ is the single parameter that defines the 

speed of convergence and steady state MSE of the 

algorithm. Convergence properties of LMS 

algorithm are not eminent [6], [44]. Fast convergence 

can be achieved, utilizing large step-size but it will 

result in divergence of equation (14). 

Normalized LMS algorithm: 

The tap input vector 𝐱(𝑘) effects the correction that 

is applied to the weights of the filter. Therefore, for 

large values of 𝑘, the LMS algorithm faces 

amplification of gradient noise, which is managed by 

Normalized least mean squares (NLMS) algorithm, 

by normalizing the step size µ with the power of the 

input[45]. Normalized LMS is used to modify its step 

size accordingly and try to attain fast convergence. 

Normalized step size is given as: 
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µ𝑘 =
µ̅

‖𝐱(𝑘)‖2 + ℇ
 

(15) 

where  µ̅  may be considered as different step size 

parameter, used to manage convergence rate of the 

algorithm. ℇ is a small integer introduced to avoid 

dealing with expected divisions by zero. Substituting 

µ
𝑘
,the weight update equation of LMS is modified 

to  normalized LMS: 

𝐰(𝑘 + 1) = 𝐰(𝑘) +
µ̅ 𝑒(𝑘)𝐱(𝑘)

‖𝐱(𝑘)‖2 + ℇ
 

(16) 

Recursive Least Square (RLS) Algorithm: 

Weighted least square error cost function is used in 

RLS, that do not comprise expectations. As 

optimization procedure is based on all past data, its 

stochastic nature is reduced in time. The cost 

function, can be detailed as: 

𝜉(𝑘)  = ∑ 𝜌(𝑙)𝑒2
𝑘

𝑙=0
(𝑙) = ∑ 𝜆𝑘−𝑙

𝑘

𝑙=0

𝑒2(𝑙) 
(17) 

In above Equation, 0 < 𝜆 ≤ 1 shows the exponential 

weighting factor, exploited to influence the current 

samples extra weightily compared to the earlier 

samples. The output error, e(k) is calculated as: 

𝑒(𝑘) = 𝑑(𝑘) − 𝑤T(𝑘)x(𝑘) (18) 

The basic derivations of RLS are included in [6], 

[42], [45] and other references. All the terms are 

acquired from these references for the weight update 

equation. The autocorrelation matrix R has been 

detailed essentially as the product of input vectors, 

and P, as the product of input-output cross 

correlation vector, both scaled by λ are given as: 

𝐑(𝑘) = ∑ 𝜆𝑘−1
𝑘

𝐼=0
𝑥𝑇(𝑙)𝑥(𝑙) 

(19) 

𝐏(𝑘) = ∑ 𝜆𝑘−1𝑥𝑘
𝑇

𝑘

𝐼=0
(𝑙)𝑦𝑘(𝑙) 

(20) 

A gain vector known as Kalman gain is intended to 

reduce the calculations and will be used later in the 

weight update equation [45], given  as: 

𝑞(𝑘) =
𝑅−1(𝑘 − 1)𝑋𝑇(𝑘)

𝜆 + 𝑅−1(𝑘 − 1)𝑋𝑇(𝑘)
 

(21) 

Utilizing Kalman gain 𝑞(𝑘) , the weight update 

equation can be rewritten as: 

𝑤(𝑘 + 1) =  𝑤(𝑘) − 𝑞(𝑘)𝑒∗(𝑘) (22) 

And current auto-correlation matrix can be expressed 

as: 

𝐑−𝟏(𝑘) =
1

𝜆
[𝑅−1(𝑘 − 1)

+  q(𝑘)𝑋𝐻(𝑘)𝑅−1(𝑘 − 1)] 

(23) 

Extended Recursive Least Square Algorithm: 

E-RLS has been found to be equivalent to 

refined Kalman filter. Good performance of E-RLS 

is proved for tracking of Rayleigh fading channel 

[46].Derivation of recursion are already determined 

in [5], [9], [17], [45]. Utilizing the forgetting factor 

λ, the a-posteriori error is defined as: 

𝑟(𝑘) = 𝜆𝑘𝑥(𝑘)𝑃(𝑘 − 1)𝑥∗(𝑘) (24) 

The Kalman gain constant is described as: 

𝑞(𝑘) =
𝑃(𝑘 − 1)

𝑟(𝑘)
 

(25) 

 

The a priori error can be expressed as: 

𝑒(𝑘) = 𝑑(𝑘) − ℎ𝑇(𝑘 − 1)𝑥(𝑘) (26) 

The α-scaled update equation for weights is used to 

acquire the estimated input: 

ℎ(𝑘) = 𝛼ℎ(𝑘 − 1) + 𝑞(𝑘)𝑒(𝑘 − 1) (27) 

Eventually, 

𝑃(𝑘) = |𝛼|2 [𝑃(𝑘 − 1) −
𝑃(𝑘−1)𝑥∗(𝑘)𝑥(𝑘)𝑃(𝑘−1)

𝜆𝑘+𝑥(𝑘)𝑃(𝑘−1)𝑥𝐻(𝑘)
]+𝜆𝑘 sI 

(28) 
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For weight update Equation, variable h(k) is replaced 

by  𝑤(𝑘), the recursion for 𝑃(𝑘) is multiplied by 𝜆−𝑘 

,and weights are zero initialized . Equations (16) and 

(17) represents weight update equation and 𝑃(𝑘)  

respectively. 

𝑤(𝑘)
= 𝛼𝑤(𝑘 − 1)

−
𝜆−1𝛼𝑃(𝑘 − 1)𝑥∗(𝑘)

1 + 𝜆−1𝑥(𝑘)𝑃(𝑘 − 1)𝑥∗(𝑘)
 

[𝑑(𝑘) − 𝑥(𝑘)𝑤𝑇(𝑘 − 1)] 

(29) 

𝑃(𝑘)

= 𝜆−1|𝛼|2 [𝑃(𝑘 − 1)

−
𝜆−1𝑃(𝑘 − 1)𝑥∗(𝑘)𝑥(𝑘)𝑃(𝑘 − 1)

1 + 𝜆−1𝑥(𝑘)𝑃(𝑘 − 1)𝑥∗(𝑘)
] + 𝑠𝐼 

(30) 

Where, S is a positive scalar with |α| ≤ 1. 

 

Computational Complexity of Different Algorithms: 

Algorithm Mul/Div Add/Sub 

LMS 2M + 1 2M 

NLMS 3M + 2 3M 

RLS 4M2 + 5M 2M2 + 3M 

 

Simulations: 

Rayleigh fading channels are utilized to analyze the 

tracking capability of the proposed algorithms. 

Different Doppler shifts are applied to different 

channels. Mean squared error (MSE) and mean 

squared deviation (MSD) performance measures are 

used in simulations to analyze the convergence rate 

and steady state mean square error. 

 The MSE and MSD can be described by the 

relations: 

MSE(dB) = 10 log10 E[𝑒2(𝑘)]

= 10 log10 E [(𝑑(𝑘)

−  𝒖(𝑘)𝒘(𝑘 −  1))
2

] 

(31) 

And, 

MSD = 10 log10E[‖𝒘𝒐(𝑘) −  𝒘(𝑘)‖2] (32) 

Simulation results are compared with component 

filters of proposed algorithm; NLMS, RLS and E-

RLS. 

Rayleigh fading channels are generated using 

MATLAB and   different Doppler shifts are applied. 

The output of the filter is subjective to Additive 

White Gaussian noise g (k). 1000 samples are used 

in experiment for 500 separate runs. Each run is 

executed for distinct batch of time-varying weights.  

Channel is assumed to scattered from 20 different 

objects. Rayleigh density function is used to draw the 

observations. For RLS and E-RLS, the weights are 

initialized to zero for each independent run and after 

convergence the same optimized weights are utilized 

by NLMS in usual way. s and α utilized by RLS and 

E-RLS ,can be defined as s= (1 − 𝛼2)𝐼 and 𝛼 =
𝐽0(2𝜋𝑓𝐷𝑇𝑠), Where 𝐽0 is a zero-order Bessel function 

of the first order and can be described to be: 

𝐽0(2𝜋𝑓𝐷𝑇𝑠) =
1

𝜋
∫ cos(2𝜋𝑓𝐷𝑇𝑠 sin 𝜃) d𝜃

𝜋

0

 

(33) 

 where 𝑓𝐷 =
𝑣𝑓𝑐

𝑐
 , is the Doppler frequency, 𝑓𝑐 is 

carrier frequency and v  is speed of receiver. c is the 

speed of light and has the value , 3 × 108 m/s, and Ts 

represents the sampling period of the input x(k). 

 

 

Parameter Type/Value 

Fading Time varying 

Rayleigh Fading 

Noise AWGN 

Algorithm NLMS, RLS, E-

RLS, Combination 

of NLMS and RLS 

Step size (µ) 0.2, 0.3, 0.4 

Doppler’s frequency 100 Hz, 500 Hz, 1000 Hz 

Sampling frequency 1.25 MHz 

Forgetting factor (λ) 0.995 
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Number of iterations 1000 

Number of runs 500 

Filter length 5 

 

Figure 2: MSE Learning curves for f
D
 = 100 Hz, µ = 0.2 

  

Figure 3: MSD Learning curves for f
D
 = 100 Hz, µ = 0.2 

Figure 2 showed the MSE learning performance for 

fD = 100 Hz, μ = 0.2 and λ = 0. 995 with the sampling 

frequency of 1.25 MHz.RLS and E-RLS has the same 

convergence point after 11 iterations; at the MSE 

level of –25 dB. While NLMS algorithm takes 104 

iterations to converge. The steady state MSE value 

for the combination of Normalized Least Square 

and Recursive Least Square algorithm, E-RLS, 

NLMS, RLS is [–28.04, –16.68, –28.04, –16.65] 

dBs respectively. 

Figure 3 is the plot of MSD for the above-mentioned 

same parameters. The steady-state MSD values for 

the proposed hybrid combination, E-RLS, NLMS, 

RLS algorithms is [–64.76, –33.75, –64.76, –33.69] 

dBs, respectively. RLS and E-RLS has identical 

MSD values. 

 

Figure 4: MSE Learning curves for f
D
 = 500 Hz, µ = 0.3 

 

Figure 5: MSD Learning curves for f
D
 = 500 Hz, µ = 0.3 

Figure 4 showed the convergence and MSE curve for 

fD = 500 Hz, µ = 0.3 and λ = 0. 995 with the sampling 

frequency of 1.25 MHz RLS and Extended-RLS 

converges in 9 iterations with MSE value of –20 db. 

While the Normalized Least Mean Square converges 

in 54 iterations. The steady-state MSE values for the 

combination of RLS and NLMS, E-RLS, N-LMS 

and RLS are [−23.11, −3.83, −23.11, −3.09] dBs, 

respectively. 

Figure 5 is the plot of MSD for the above mentioned 

same parameters. The steady-state MSD values for 

the combination of RLS and NLMS, E-RLS, N-LMS 

and RLS is [−49.03, −7.64, −49.03, −6.13] dBs, 

respectively. 

 

Figure 6: MSE curve for f
D
 = 1000 Hz and µ =0.2 
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Figure 7: MSD curve for f
D
 = 1000 Hz and µ =0.2 

Figure 6 showed the convergence and MSE curve for 

fD = 1000 Hz, µ = 0.2 and λ = 0. 995. RLS and 

Extended-RLS converges in 8 iterations with -15 dB 

MSE value. While the Normalized Least Mean 

Square algorithm achieves this value in 52 iterations. 

The steady-state MSE for the combination of RLS 

and NLMS, E-RLS, N-LMS and RLS is [−13.36, 

0.53, −13.36, 2.16] dBs, respectively. It can be seen 

that Recursive Least Square shows the worst 

behavior at such high frequencies of 1000 Hz. 

The MSD performance for the Doppler shift 1000 

Hz, λ = 0.995 is shown in Figure 7. The MSD values 

for combination of NLMS and RLS, E- RLS, NLMS 

and RLS are [−27.7, 0.9775, −27.72, 4.25] dBs, 

respectively.  

 

Figure 8: Tracking performance of different algorithms for  

tap 3when f
D
 = 500 Hz, µ=0.3 

Figure 8 focuses on tap 3 particularly when fD = 500 

Hz and µ = 0.3. The difference between performance 

of NLMS, RLS, E-RLS and hybrid configuration to 

track fast time variation of the Rayleigh channel from 

start to end clearly appeared in figure, that shows, 

combination of NLMS and RLS algorithm has a 

good ability to track fast variation than NLMS and 

RLS algorithms individually. 

 

Figure 9: Tracking performance of algorithms for five taps; for 

f
D
 = 1000Hz, µ = 0.4, λ = 0.995 

Figure 9 displays the tap weights tracking plots of all 

algorithm for 5 filter taps sequentially from top to 

bottom ,for f
D
 = 1000Hz, µ = 0.4, λ = 0.995, compared 

with the actual channel to be estimated. The 

supremacy of combination of RLS-NLMS can be 

seen in all cases. 

Conclusion: 

The purpose of the combination of algorithm is to 

utilize the preeminent properties of component 

adaptive filters. The input was a time varying 

Rayleigh fading channel with different Doppler 

shifts. The proposed algorithm exhibits fast 

convergence property of RLS and superior steady 

state performance of NLMS algorithm. At higher 

Doppler shifts, the proposed algorithm mostly shows 

better performance in steady state, where the RLS 

and E-RLS algorithms demonstrate degraded 

performance. Analyzing all the simulation results 

show that, combination of adaptive filters approach 

provides the diversity that can be used to amplify 

performance beyond the ability of individual 

adaptive filter. 
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